• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Long-term evolution of the martian crust-mantle system

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Grott, Matthias
Baratoux, David
Hauber, Ernst
Sautter, Violaine H.
Mustard, John Fraser
Gasnault, Olivier M.
Ruff, Steven W.
Karato, Shun Ichrio
Debaille, Vinciane
Knapmeyer, Martin
Sohl, Frank
van Hoolst, Tim
Breuer, Doris
Morschhauser, Achim
Toplis, Michael J.
Show allShow less
Keywords
Géochimie
Sciences de l'espace
Système solaire
Geochemistry
Geophysics
Mars
Volcanism

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/1028109
Online Access
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/163236
Abstract
Lacking plate tectonics and crustal recycling, the long-term evolution of the crust-mantle system of Mars is driven by mantle convection, partial melting, and silicate differentiation. Volcanic landforms such as lava flows, shield volcanoes, volcanic cones, pyroclastic deposits, and dikes are observed on the martian surface, and while activity was widespread during the late Noachian and Hesperian, volcanism became more and more restricted to the Tharsis and Elysium provinces in the Amazonian period. Martian igneous rocks are predominantly basaltic in composition, and remote sensing data, in-situ data, and analysis of the SNC meteorites indicate that magma source regions were located at depths between 80 and 150 km, with degrees of partial melting ranging from 5 to 15 %. Furthermore, magma storage at depth appears to be of limited importance, and secular cooling rates of 30 to 40 K Gyr-1 were derived from surface chemistry for the Hesperian and Amazonian periods. These estimates are in general agreement with numerical models of the thermo-chemical evolution of Mars, which predict source region depths of 100 to 200 km, degrees of partial melting between 5 and 20 %, and secular cooling rates of 40 to 50 K Gyr -1. In addition, these model predictions largely agree with elastic lithosphere thickness estimates derived from gravity and topography data. Major unknowns related to the evolution of the crust-mantle system are the age of the shergottites, the planet's initial bulk mantle water content, and its average crustal thickness. Analysis of the SNC meteorites, estimates of the elastic lithosphere thickness, as well as the fact that tidal dissipation takes place in the martian mantle indicate that rheologically significant amounts of water of a few tens of ppm are still present in the interior. However, the exact amount is controversial and estimates range from only a few to more than 200 ppm. Owing to the uncertain formation age of the shergottites it is unclear whether these water contents correspond to the ancient or present mantle. It therefore remains to be investigated whether petrologically significant amounts of water of more than 100 ppm are or have been present in the deep interior. Although models suggest that about 50 % of the incompatible species (H2O, K, Th, U) have been removed from the mantle, the amount of mantle differentiation remains uncertain because the average crustal thickness is merely constrained to within a factor of two. © 2012 Springer Science+Business Media Dordrecht.
SCOPUS: ar.j
info:eu-repo/semantics/published
Date
2013
Type
info:eu-repo/semantics/article
Identifier
oai:dipot.ulb.ac.be:2013/163236
uri/info:doi/10.1007/s11214-012-9948-3
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/163236
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2023)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.