• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Steady-state planet migration by the Kozai-Lidov mechanism in stellar binaries

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Petrovich, Cristobal
Keywords
Astrophysics - Earth and Planetary Astrophysics

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/1029950
Online Access
http://arxiv.org/abs/1405.0280
Abstract
We study the steady-state orbital distributions of giant planets migrating through the combination of the Kozai-Lidov (KL) mechanism due to a stellar companion and friction due to tides raised on the planet by the host star. We run a large set of Monte Carlo simulations that describe the secular evolution of a star-planet-star triple system including the effects from general relativistic precession, stellar and planetary spin evolution, and tides. Our simulations show that KL migration produces Hot Jupiters (HJs) with semi-major axes that are generally smaller than in the observations and they can only explain the observations if the following are both true: (i) tidal dissipation at high eccentricities is at least $\sim 150$ times more efficient than the upper limit inferred from the Jupiter-Io interaction; (ii) highly eccentric planets get tidally disrupted at distances $\gtrsim 0.015$ AU. Based on the occurrence rate and semi-major axis distribution of HJs, we find that KL migration in stellar binaries can produce at most $\sim 20\%$ of the observed HJs. Almost no intermediate-period (semi-major axis $\sim0.1-2$ AU) planets are formed by this mechanism - migrating planets spend most of their lifetimes undergoing KL oscillations at large orbital separations ($>2$ AU) or as Hot Jupiters.
Comment: 29 pages, 11 figures. ApJ, in press; accepted November 3, 2014. Section 6.3 added showing the effect of the host star's spin period
Date
2014-05-01
Type
text
Identifier
oai:arXiv.org:1405.0280
http://arxiv.org/abs/1405.0280
2015, ApJ, 799, 27
doi:10.1088/0004-637X/799/1/27
DOI
10.1088/0004-637X/799/1/27
ae974a485f413a2113503eed53cd6c53
10.1088/0004-637X/799/1/27
Scopus Count
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.