Online Access
http://hdl.handle.net/2262/61101Abstract
Abstract We investigate autonomous perturbations on the orbits of LISA, namely the effects produced by gravitational fields that can be expressed only in terms of the position, but not of time in the Hill frame. This first step in the study of the LISA orbits has been the subject of recent papers which implement analytical techniques based on a " post-epicyclic " approximation in the Hill frame to find optimal unperturbed orbits. The natural step forward is to analyze the perturbations to purely Keplerian orbits. In the present work a particular emphasis is put on the tidal field of the Earth assumed to be stationary in the Hill frame. Other relevant classes of autonomous perturbations are those given by the corrections to the Solar field responsible for a slow precession and a global stationary field, associated to sources like the interplanetary dust or a local dark matter component. The inclusion of simple linear contributions in the expansion of these fields produces secular solutions that can be compared with the measurements and possibly used to evaluate some morphological property of the perturbing components.Dipartimento di Fisica ? Universita di Roma " Tor Vergata " &, INFN ? Sezione di Roma Tor Vergata - (Pucacco, G)
Dipartimento di Fisica ? Universita di Roma " Tor Vergata " &, INFN ? Sezione di Roma Tor Vergata - (Bassan, M)
Dipartimento di Fisica ? Universita di Roma " Tor Vergata " &, INFN ? Sezione di Roma Tor Vergata - (Visco, M)
Dipartimento di Fisica ? Universita di Roma " Tor Vergata " &, INFN ? Sezione di Roma Tor Vergata - (, IFSI-INAF)
Dipartimento di Fisica ? Universita di Roma " Tor Vergata " &, INFN ? Sezione di Roma Tor Vergata - (Sezione, INFN ?)
Dipartimento di Fisica ? Universita di Roma " Tor Vergata " &, INFN ? Sezione di Roma Tor Vergata - (Roma, di)
Dipartimento di Fisica ? Universita di Roma " Tor Vergata " &, INFN ? Sezione di Roma Tor Vergata - (Vergata, Tor)
Date
2011-12-07Identifier
oai:tara.tcd.ie:2262/611010264-9381 (ISSN)
1361-6382 (eISSN)
http://hdl.handle.net/2262/61101
Classical and Quantum Gravity
27
23
235001
10.1088/0264-9381/27/23/235001
Class. Quantum Grav. (abbrev)