• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Astrocytes as Cellular Vehicles in Ex Vivo Gene Therapy Studies to the Rat Brain

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Ericson, Cecilia
Keywords
Medicinska grundvetenskaper
Medicin (människa och djur)
Medicine (human and vertebrates)
Lentivirus
Transplantation
CNS
Astrocytes

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/1180553
Online Access
http://lup.lub.lu.se/record/544595
Abstract
Neurodegenerative disorders are characterized by a progressive cell-death in the brain, and loss of different functions in the patient. Today, there are no cures for any of the various diseases. Parkinson's disease is a neurodegenerative disorder with a prevalence of 0.1% and the first symptoms usually start to appear between 50-60 years of age with rigidity, tremor, bradykinesia and postural abnormalities. Even though the reason for the development is not fully understood, the pathophysiology of the disease has been well documented. ?Sere is a progressive loss of dopamine-producing cells in substantia nigra in the midbrain, resulting in a significant decline of dopamine levels in the striatum and a disturbed motoric function. ?Se most common treatment today is oral intake of levodopa, the rate-limiting enzyme in the dopamine synthesis pathway, however the effects of the drug becomes limited over time and hence, there is a need for alternative therapy. Instead of using fetal human tissue for transplantation, with both logistical and ethical dilemmas, ex vivo gene therapy holds great promise for treatment of different neurodegenerative disorders. Ex vivo gene therapy is a combination of cell transplantation and genetic engineering, with the aim of restoring lost neurotransmitters, such as dopamine, or to transfer neurotrophic factors to stimulate cell survival in a damaged or injured brain. In the present thesis, I have genetically modified primary astrocytes of both rodent and human origin with lentiviral vectors in order to evaluate the potential of the cells to provide long-term transgene expression following transplantation to the rat brain. Astrocytes are a type of glial cells in the brain attributed various functions, and have been explored in several studies to be used as cellular vehicles in ex vivo gene delivery to the central nervous system. Compared to previous studies were astrocytes have been genetically modified in vitro using other viralbased vectors, I have shown in my work that lentivirally transduced astrocytes have the capacity to express the transgene product at significant levels for up to at least 12 weeks after grafting to the rat brain. However, before moving towards clinical trials using genetically modified astrocytes, the vector system has to be further developed in order to be able to regulate the transgene expression, even after the cells have been integrated within the host brain.
Date
2005
Type
thesis/doccomp
Identifier
oai:lup.lub.lu.se:7ed620b0-6fd6-4426-8adc-2d69b7db6283
http://lup.lub.lu.se/record/544595
urn:isbn:91-85439-17-7
Copyright/License
info:eu-repo/semantics/closedAccess
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.