Show simple item record

dc.contributor.authorCarlos S. O. Yokoi
dc.contributor.authorFrancisco A. da Costa
dc.date.accessioned2019-10-25T20:00:59Z
dc.date.available2019-10-25T20:00:59Z
dc.date.created2017-09-28 23:26
dc.date.issued2003
dc.identifieroai:redalyc.org:46413573048
dc.identifierhttp://www.redalyc.org/articulo.oa?id=46413573048
dc.identifier.urihttp://hdl.handle.net/20.500.12424/1499447
dc.description.abstractWe study the stability of the replica-symmetric solution of a two-sublattice infinite-range spin-glass model, which can describe the transition from an antiferromagnetic to a spin-glass state. The eigenvalues associated with replica-symmetric perturbations are in general complex. The natural generalization of the usual stability condition is to require the real part of these eigenvalues to be positive. The necessary and sufficient conditions for all the roots of the secular equation to have positive real parts is given by the Hurwitz criterion. The generalized stability condition allows a consistent analysis of the phase diagram within the replica-symmetric approximation.
dc.format.mediumapplication/pdf
dc.languageen
dc.language.isoeng
dc.publisherSociedade Brasileira de Física
dc.relation.ispartofhttp://www.redalyc.org/revista.oa?id=464
dc.rightsBrazilian Journal of Physics
dc.sourceBrazilian Journal of Physics (Brasil) Num.4 Vol.33
dc.subjectFísica, Astronomía y Matemáticas
dc.titleStability of a Two-Sublattice Spin-Glass Model
dc.typeArtículo científico
ge.collectioncodeOAIDATA
ge.dataimportlabelOAI metadata object
ge.identifier.legacyglobethics:11561421
ge.identifier.permalinkhttps://www.globethics.net/gtl/11561421
ge.lastmodificationdate2017-09-28 23:26
ge.lastmodificationuseradmin@pointsoftware.ch (import)
ge.submissions0
ge.oai.exportid149001
ge.oai.repositoryid3008
ge.oai.streamid5
ge.setnameGlobeTheoLib
ge.setspecglobetheolib
ge.linkhttp://www.redalyc.org/articulo.oa?id=46413573048


This item appears in the following Collection(s)

Show simple item record