• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

LoginRegister

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Stem cells in skin regeneration: biomaterials and computational models

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Daniele eTartarini
Elisa eMele
Keywords
Mesenchymal Stem Cells
Wound Healing
adipose stem cells
Flame
cell-based modelling approaches
Biotechnology
TP248.13-248.65

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/1526872
Online Access
https://doaj.org/article/48cbb2f5cef34863aef5821abad43921
Abstract
The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles), has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells have been proposed for the treatment of these wounds, thanks to the ability of stem cells to self-renew and specifically differentiate in response to the target bimolecular environment. Here we discuss how advanced biomedical devices can be developed by combining stem cells with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bio-constructs, reducing the need of expensive, time-consuming and ethically controversial animal experimentation.
Date
2016-01-01
Type
Article
Identifier
oai:doaj.org/article:48cbb2f5cef34863aef5821abad43921
2296-4185
10.3389/fbioe.2015.00206
https://doaj.org/article/48cbb2f5cef34863aef5821abad43921
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.