Author(s)
Boyajian, Tabetha S.Alonso, Roi
Ammerman, Alex
Armstrong, David
Asensio Ramos, A.
Barkaoui, K.
Beatty, Thomas G.
Benkhaldoun, Z.
Benni, Paul
Bentley, Rory
Berdyugin, Andrei
Berdyugina, Svetlana
Bergeron, Serge
Bieryla, Allyson
Blain, Michaela G.
Capetillo Blanco, Alicia
Bodman, Eva H. L.
Boucher, Anne
Bradley, Mark
Brincat, Stephen M.
Brink, Thomas G.
Briol, John
Brown, David J. A.
Budaj, J.
Burdanov, Artem
Cale, B.
Aznar Carbo, Miguel
Castillo Garcia, R.
Clark, Wendy J.
Clayton, Geoffrey C.
Clem, James L.
Coker, Phillip H.
Cook, Evan M.
Copperwheat, Chris M.
Curtis, J.
Cutri, R. M.
Cseh, B.
Cynamon, C. H.
Daniels, Alex J.
Davenport, James R. A.
Deeg, Hans J.
De Lorenzo, Roberto
De Jaeger, Thomas
Desrosiers, Jean-Bruno
Dolan, John
Dowhos, D. J.
Dubois, Franky
Durkee, R.
Dvorak, Shawn
Easley, Lynn
Edwards, N.
Ellis, Tyler G.
Erdelyi, Emery
Ertel, Steve
Farfán, Rafael G.
Farihi, J.
Filippenko, Alexei V.
Foxell, Emma
Gandolfi, Davide
Garcia, Faustino
Giddens, F.
Gillon, Michaël
González-Carballo, Juan-Luis
González-Fernández, C.
González Hernández, J. I.
Graham, Keith A.
Greene, Kenton A.
Gregorio, J.
Hallakoun, Na Ama
Hanyecz, Ottó
Harp, G. R.
Henry, Gregory W.
Herrero, E.
Hildbold, Caleb F.
Hinzel, D.
Holgado, G.
Ignácz, Bernadett
Ivanov, Valentin D.
Jehin, Emmanuel
Jermak, Helen E.
Johnston, Steve
Kafka, S.
Kalup, Csilla
Kardasis, Emmanuel
Kaspi, Shai
Kennedy, Grant M.
Kiefer, F.
Kielty, C. L.
Kessler, Dennis
Kiiskinen, H.
Killestein, T. L.
King, Ronald A.
Kollar, V.
Korhonen, H.
Kotnik, C.
Könyves-Tóth, Réka
Kriskovics, Levente
Krumm, Nathan
Krushinsky, Vadim
Kundra, E.
Lachapelle, Francois-Rene
Lacourse, D.
Lake, P.
Lam, Kristine
Lamb, Gavin P.
Lane, Dave
Lau, Marie Wingyee
Lewin, Pablo
Lintott, Chris
Lisse, Carey
Logie, Ludwig
Longeard, Nicolas
Lopez Villanueva, M.
Whit Ludington, E.
Mainzer, A.
Malo, Lison
Maloney, Chris
Mann, A.
Mantero, A.
Marengo, Massimo
Marchant, Jon
Martinez González, M. J.
Masiero, Joseph R.
Mauerhan, Jon C.
Mccormac, James
Mcneely, Aaron
Meng, Huan Y. A.
Miller, Mike
Molnar, Lawrence A.
Morales, Jorge
Morris, Brett M.
Muterspaugh, Matthew W.
Nespral, David
Nugent, C. R.
Nugent, Katherine M.
Odasso, A.
O'keeffe, Derek
Oksanen, A.
O'meara, John M.
Ordasi, András
Osborn, Hugh
Ott, John J.
Parks, J. R.
Rodriguez Perez, Diego
Petriew, Vance
Pickard, R.
Pál, András
Plavchan, P.
Westendorp Plaza, C.
Pollacco, Don
Pozo Nuñez, F.
Pozuelos, F. J.
Rau, Steve
Redfield, Seth
Relles, Howard
Ribas, I.
Richards, Jon
Saario, Joonas L. O.
Safron, Emily J.
Sallai, J. Martin
Sárneczky, Krisztián
Schaefer, Bradley E.
Schumer, Clea F.
Schwartzendruber, Madison
Siegel, Michael H.
Siemion, Andrew P. V.
Simmons, Brooke D.
Simon, Joshua D.
Simón-Diaz, S.
Sitko, Michael L.
Socas-Navarro, Hector
Sódor, Á.
Starkey, Donn
Steele, Iain A.
Stone, Geoff
Street, R. A.
Sullivan, Tricia
Suomela, J.
Swift, J. J.
Szabó, Gyula M.
Szabó, Róbert
Szakáts, Róbert
Szalai, Tamás
Tanner, Angelle M.
Toledo-Padrón, B.
Tordai, Tamás
Triaud, Amaury H. M. J.
Turner, Jake D.
Ulowetz, Joseph H.
Urbanik, Marian
Vanaverbeke, Siegfried
Vanderburg, Andrew
Vida, Krisztián
Vietje, Brad P.
Vinkó, József
Von Braun, K.
Waagen, Elizabeth O.
Walsh, Dan
Watson, Christopher A.
Weir, R. C.
Wenzel, Klaus
Williamson, Michael W.
Wright, Jason T.
Wyatt, M. C.
Zheng, Weikang
Zsidi, Gabriella
Keywords
Astrophysics - Solar and Stellar AstrophysicsAstrophysics - Earth and Planetary Astrophysics
Physical, chemical, mathematical & earth Sciences :: Space science, astronomy & astrophysics
Physique, chimie, mathématiques & sciences de la terre :: Aérospatiale, astronomie & astrophysique
Full record
Show full item recordOnline Access
https://orbi.uliege.be/handle/2268/220076http://adsabs.harvard.edu/abs/2018arXiv180100732B
https://arxiv.org/abs/1801.00732
Abstract
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process.Date
2018-01-01Type
info:eu-repo/semantics/preprintIdentifier
oai:orbi.ulg.ac.be:2268/220076https://orbi.uliege.be/handle/2268/220076
http://adsabs.harvard.edu/abs/2018arXiv180100732B
https://arxiv.org/abs/1801.00732
Copyright/License
info:eu-repo/semantics/openAccessCollections
Related items
Showing items related by title, author, creator and subject.
-
ATLAS Probe: Breakthrough Science of Galaxy Evolution, Cosmology, Milky Way, and the Solar SystemWang, Yun; Robberto, Massimo; Dickinson, Mark; Ferguson, Henry C.; Hillenbrand, Lynne A.; Fraser, Wesley; Behroozi, Peter; Brinchmann, Jarle; Cimatti, Andrea; Content, Robert; et al. (2018-02-05)ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a concept for a NASA probe-class space mission, the spectroscopic follow-up to WFIRST, multiplexing its scientific return by obtaining deep 1 to 4 micron slit spectroscopy for ~90% of all galaxies imaged by the ~2200 sq deg WFIRST High Latitude Survey at z > 0.5. ATLAS spectroscopy will measure accurate and precise redshifts for ~300M galaxies out to z < 7, and deliver spectra that enable a wide range of diagnostic studies of the physical properties of galaxies over most of cosmic history. ATLAS and WFIRST together will produce a 3D map of the Universe with ~Mpc resolution in redshift space. ATLAS will: (1) Revolutionize galaxy evolution studies by tracing the relation between galaxies and dark matter from galaxy groups to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly; (2) Open a new window into the dark Universe by weighing the dark matter filaments using 3D weak lensing with spectroscopic redshifts, and obtaining definitive measurements of dark energy and modification of General Relativity using galaxy clustering; (3) Probe the Milky Way's dust-enshrouded regions, reaching the far side of our Galaxy; and (4) Explore the formation history of the outer Solar System by characterizing Kuiper Belt Objects. ATLAS is a 1.5m telescope with a field of view (FoV) of 0.4 sq deg, and uses Digital Micro-mirror Devices (DMDs) as slit selectors. It has a spectroscopic resolution of R = 600, a wavelength range of 1-4 microns, and a spectroscopic multiplex factor ~5,000-10,000. ATLAS is designed to fit within the NASA probe-class mission cost envelope; it has a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology (DMDs can reach TRL 6 within 2 years). ATLAS will lead to transformative science over the entire range of astrophysics.
-
Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinationsInstitut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE); Université Pierre et Marie Curie - Paris 6 (UPMC) - Université Lille 1 - Sciences et technologies - Observatoire de Paris - INSU - Centre National de la Recherche Scientifique (CNRS); Laskar, Jacques; Boué, Gwenael (HAL CCSDEDP Sciences, 2010-11)13 pages. Published in Astronomy & Astrophysics. Copyright ESO.
-
The Secular Aberration Drift and Future Challenges for VLBI AstrometryTitov, Oleg (2013-01-02)The centrifugial acceleration of the Solar system, resulting from the gravitational attraction of the Galaxy centre, causes a phenomenon known as 'secular aberrration drift'. This acceleration of the Solar system barycentre has been ignored so far in the standard procedures for high-precision astrometry. It turns out that the current definition of the celestial reference frame as epochless and based on the assumption that quasars have no detectable proper motions, needs to be revised. In the future, a realization of the celestial reference system (realized either with VLBI, or GAIA) should correct source coordinates from this effect, possibly by providing source positions together with their proper motions. Alternatively, the galactocentric acceleration may be incorporated into the conventional group delay model applied for VLBI data analysis.