Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making
Keywords
Computer Science - Computers and SocietyComputer Science - Human-Computer Interaction
Computer Science - Learning
K.4.1
H.1.2
J.1
Full record
Show full item recordOnline Access
http://arxiv.org/abs/1802.01029Abstract
Calls for heightened consideration of fairness and accountability in algorithmically-informed public decisions---like taxation, justice, and child protection---are now commonplace. How might designers support such human values? We interviewed 27 public sector machine learning practitioners across 5 OECD countries regarding challenges understanding and imbuing public values into their work. The results suggest a disconnect between organisational and institutional realities, constraints and needs, and those addressed by current research into usable, transparent and 'discrimination-aware' machine learning---absences likely to undermine practical initiatives unless addressed. We see design opportunities in this disconnect, such as in supporting the tracking of concept drift in secondary data sources, and in building usable transparency tools to identify risks and incorporate domain knowledge, aimed both at managers and at the 'street-level bureaucrats' on the frontlines of public service. We conclude by outlining ethical challenges and future directions for collaboration in these high-stakes applications.Comment: 14 pages, 0 figures, ACM Conference on Human Factors in Computing Systems (CHI'18), April 21--26, Montreal, Canada
Date
2018-02-03Type
textIdentifier
oai:arXiv.org:1802.01029http://arxiv.org/abs/1802.01029
doi:10.1145/3173574.3174014
DOI
10.1145/3173574.3174014ae974a485f413a2113503eed53cd6c53
10.1145/3173574.3174014
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Actes du CARI 2014 (Colloque africain sur la recherche en informatique et mathématiques appliquées)Université Badji Mokhtar - Annaba [Annaba] ( UBMA ); SUpervision of large MOdular and distributed systems ( SUMO ) ; Inria Rennes – Bretagne Atlantique ; Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -LANGAGE ET GÉNIE LOGICIEL ( IRISA-D4 ) ; Institut de Recherche en Informatique et Systèmes Aléatoires ( IRISA ) ; CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ) -CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ) -Institut de Recherche en Informatique et Systèmes Aléatoires ( IRISA ) ; CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ) -CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ); Laboratoire d'Analyse Numérique et Informatique [Sénégal] ( LANI ) ; Université Gaston Berger de Saint-Louis Sénégal ( UGB ); Mokhtar Sellami; Eric Badouel; Moussa Lo; Sellami , Mokhtar; Badouel , Eric; Lo , Moussa (HAL CCSDInria, 2014-10-17)International audience
-
An Intelligent Mediating Model for Collaborative e-Learning Management SystemsAkanbi Caleb Olufisoye; Adagunodo E Rotimi (IJCSI Press, 2011-07-01)E-learning management systems(e- LMSs) lack ontologies for sharing their domain knowledge learning objects with others due to differences or non-uniformity in architectures, platforms, protocols and representations. The effect of this on e-learners is that collaboration with other e-LMS during learning processes is not permitted. Hence, learning process is restricted only to the knowledge base of a particular E-LMS adopted by an institution, which may limit the mastery level of learners. To provide a remedy to this problem, an intelligent multi-agent mediating system model is proposed in this study using hybrid rule and case based reasoning scheme. Unified Modeling Language(UML) is used as a design tool to specify the active and passive entities of the model in form class The model proposed provides a collaborative platform for sharing of the learning objects across multiple e-LMSs, during learning processes.
-
E-learning Materials Development: Applying and Implementing Software Reuse Principles and Granularity Levels in the SmallNabil Arman (SERSC, 2010-06-01)E-learning materials development is typically acknowledged as an expensive, complicated, and lengthy process, often producing materials that are of low quality and difficult to adaptand maintain. It has always been a challenge to identify proper e-learning materials that can be reused at a reasonable cost and effort. In this paper, software engineering reuse principlesare applied to e-learning materials development process. These principles are then applied and implemented in a prototype that is integrated with an open-source course management systems. The reuse of existing e-learning materials is beneficial in improving developers of elearning materials productivity. E-learning material reuse is performed, in this research, based on construct’s granularity rather than on unified constructs of one size.