Show simple item record

dc.contributor.authorJankovic, M.
dc.contributor.authorKumar, K.
dc.contributor.authorOrtiz-Gomez, N.
dc.contributor.authorRomero-Martin, J.
dc.contributor.authorKirchner, F.
dc.contributor.authorTopputo, F.
dc.contributor.authorWalker, S.
dc.contributor.authorVasile, M.
dc.date.accessioned2019-10-27T02:31:09Z
dc.date.available2019-10-27T02:31:09Z
dc.date.created2018-04-14 23:07
dc.date.issued2015
dc.identifieroai:re.public.polimi.it:11311/968786
dc.identifierhttp://hdl.handle.net/11311/968786
dc.identifier.urihttp://hdl.handle.net/20.500.12424/2032991
dc.description.abstractRecent studies of the space debris population in Low Earth Orbit (LEO) have concluded that certain regions have likely reached a critical density of objects, which could eventually lead to a cascading process known as the Kessler syndrome. Thus, the growing perception is that we need to consider Active Debris Removal missions (ADR) as an essential element to preserve the space environment for future generations. Among all objects in the current LEO environment, Ariane rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions, given their number, mass properties and spatial distribution. ADR techniques involving orbital robotics are considered relatively well-understood options, since technologies and theories for automated robotic capture and servicing of spacecraft already exist and have undergone successful in-orbit testing. However, rendezvous and capture of large, noncooperative objects is a highly challenging task, especially with a robotic system. In fact, at present, the technologies necessary for proximity operations and capture, even of controlled targets, lack in maturity. Therefore, to enable future robotic ADR missions there is a pressing need for more advanced and modular systems that can cope with non-controlled, tumbling objects. The rendezvous and capture (RVC) control system is one of the most critical subsystems of future robotic ADR missions. Within that context, we present a concept of a robotic spacecraft capable of approaching, capturing and manipulating R/Bs. Moreover, we provide a more detailed overview of the envisioned control architecture, bearing in mind the requirements for the most critical phases of an ADR mission, which are the close-range rendezvous and final approach. The modules of the RVC control architecture covered by our work include the: navigation module, guidance module, control module, de-tumbling module and robotics module. Each module is responsible for particular functions within the overall system, which are illustrated in this paper. The target is assumed to be non-cooperative, although its shape is well-characterized a priori. We provide a synopsis of the challenges that proximity operations pose for the design of a robotic RVC control system for ADR.
dc.language.isoeng
dc.relation.ispartofinfo:eu-repo/semantics/altIdentifier/hdl/11311/968786
dc.relation.ispartof5th CEAS Air & Space Conference
dc.relation.ispartof5th CEAS Air & Space Conference
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleRobotic Systems for Active Debris Removal: Equipments, State-of-the-Art, and Concept Architecture of the Rendez Vous and Capture (RVC) Control System
dc.typeinfo:eu-repo/semantics/conferenceObject
ge.collectioncodeOAIDATA
ge.dataimportlabelOAI metadata object
ge.identifier.legacyglobethics:14379693
ge.identifier.permalinkhttps://www.globethics.net/gtl/14379693
ge.lastmodificationdate2018-04-14 23:07
ge.lastmodificationuseradmin@pointsoftware.ch (import)
ge.submissions0
ge.oai.exportid149500
ge.oai.repositoryid99705
ge.oai.setname04 CONTRIBUTO IN ATTI DI CONVEGNO
ge.oai.setnameCatalogo Pubblicazioni POLIMI
ge.oai.setname04.1 Contributo in Atti di convegno
ge.oai.setspeccom_11311_960630
ge.oai.setspeccom_11311_960626
ge.oai.setspeccol_11311_960608
ge.oai.streamid5
ge.setnameGlobeTheoLib
ge.setspecglobetheolib
ge.linkhttp://hdl.handle.net/11311/968786


This item appears in the following Collection(s)

Show simple item record