Show simple item record

dc.contributor.authorEline R Kupers
dc.contributor.authorHelena X Wang
dc.contributor.authorKaoru Amano
dc.contributor.authorKendrick N Kay
dc.contributor.authorDavid J Heeger
dc.contributor.authorJonathan Winawer
dc.date.accessioned2019-10-27T09:10:18Z
dc.date.available2019-10-27T09:10:18Z
dc.date.created2018-05-28 23:11
dc.identifieroai:doaj.org/article:2f3707ca022c415689e613fa13ecdfa0
dc.identifier1932-6203
dc.identifier10.1371/journal.pone.0193107
dc.identifierhttps://doaj.org/article/2f3707ca022c415689e613fa13ecdfa0
dc.identifier.urihttp://hdl.handle.net/20.500.12424/2159911
dc.description.abstractCurrently, non-invasive methods for studying the human brain do not routinely and reliably measure spike-rate-dependent signals, independent of responses such as hemodynamic coupling (fMRI) and subthreshold neuronal synchrony (oscillations and event-related potentials). In contrast, invasive methods-microelectrode recordings and electrocorticography (ECoG)-have recently measured broadband power elevation in field potentials (~50-200 Hz) as a proxy for locally averaged spike rates. Here, we sought to detect and quantify stimulus-related broadband responses using magnetoencephalography (MEG). Extracranial measurements like MEG and EEG have multiple global noise sources and relatively low signal-to-noise ratios; moreover high frequency artifacts from eye movements can be confounded with stimulus design and mistaken for signals originating from brain activity. For these reasons, we developed an automated denoising technique that helps reveal the broadband signal of interest. Subjects viewed 12-Hz contrast-reversing patterns in the left, right, or bilateral visual field. Sensor time series were separated into evoked (12-Hz amplitude) and broadband components (60-150 Hz). In all subjects, denoised broadband responses were reliably measured in sensors over occipital cortex, even in trials without microsaccades. The broadband pattern was stimulus-dependent, with greater power contralateral to the stimulus. Because we obtain reliable broadband estimates with short experiments (~20 minutes), and with sufficient signal-to-noise to distinguish responses to different stimuli, we conclude that MEG broadband signals, denoised with our method, offer a practical, non-invasive means for characterizing spike-rate-dependent neural activity for addressing scientific questions about human brain function.
dc.languageEN
dc.publisherPublic Library of Science (PLoS)
dc.relation.ispartofhttp://europepmc.org/articles/PMC5846788?pdf=render
dc.relation.ispartofhttps://doaj.org/toc/1932-6203
dc.sourcePLoS ONE, Vol 13, Iss 3, p e0193107 (2018)
dc.subjectMedicine
dc.subjectR
dc.subjectScience
dc.subjectQ
dc.titleA non-invasive, quantitative study of broadband spectral responses in human visual cortex.
dc.typeArticle
ge.collectioncodeOAIDATA
ge.dataimportlabelOAI metadata object
ge.identifier.legacyglobethics:14607964
ge.identifier.permalinkhttps://www.globethics.net/gtl/14607964
ge.lastmodificationdate2018-05-28 23:11
ge.lastmodificationuseradmin@pointsoftware.ch (import)
ge.submissions0
ge.oai.exportid149000
ge.oai.repositoryid52
ge.oai.setnameLCC:Medicine
ge.oai.setnameLCC:Science
ge.oai.setspecTENDOk1lZGljaW5l
ge.oai.setspecTENDOlNjaWVuY2U~
ge.oai.streamid5
ge.setnameGlobeTheoLib
ge.setspecglobetheolib
ge.linkhttps://doaj.org/article/2f3707ca022c415689e613fa13ecdfa0


This item appears in the following Collection(s)

Show simple item record