• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Galactic bulges: the importance of early formation scenarios vs. secular evolution

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Seidel, Marja K.
Cacho, R.
Ruiz-Lara, T.
Falcón-Barroso, J.
Pérez, I.
Sánchez-Blázquez, P.
Vogt, F. P. A.
Ness, M.
Freeman, K.
Aniyan, S.
Combes, Françoise
Dannerbauer, Helmut
Verdugo, Miguel
Show allShow less
Keywords
galaxies: individual (NGC 5701
NGC 6753
NGC 7552)
galaxies: bulges
galaxies: evolution
galaxies: kinematics and dynamics
galaxies: stellar content
techniques: spectroscopic

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/2213373
Online Access
http://edoc.mpg.de/719992
Abstract
We study the stellar content of three galactic bulges with the high resolution gratings (R=7000) of the WiFeS integral field unit in order to better understand their formation and evolution. In all cases we find that at least 50% of the stellar mass already existed 12 Gyrs ago, more than currently predicted by simulations. A younger component (age between ~1 to ~8 Gyrs) is also prominent and its present day distribution seems to be much more affected by morphological structures, especially bars, than the older one. This in-depth analysis supports the notion of increasing complexity in bulges which cannot be achieved by mergers alone, but requires a non-negligible contribution from secular evolution.
Date
2015
Type
Other
Identifier
oai:edoc.mpg.de:719992
http://edoc.mpg.de/719992
Collections
OAI Harvested Content

entitlement

 

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Galaxy And Mass Assembly (GAMA): Gas Fuelling of Spiral Galaxies in the Local Universe I. - The Effect of the Group Environment on Star Formation in Spiral Galaxies

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; et al. (2016-12-21)
    Abridged - We quantify the effect of the galaxy group environment (for 12.5 < log(M_group/Msun) < 14.0) on the star formation rates of the (morphologically-selected) population of disk-dominated local Universe spiral galaxies (z < 0.13) with stellar masses log(M*/Msun) > 9.5. Within this population, we find that, while a small minority of group satellites are strongly quenched, the group centrals, and the large majority of satellites exhibit levels of SFR indistinguishable from ungrouped "field" galaxies of the same M*, albeit with a higher scatter, and for all M*. Modelling these results, we deduce that disk-dominated satellites continue to be characterized by a rapid cycling of gas into and out of their ISM at rates similar to those operating prior to infall, with the on-going fuelling likely sourced from the group intrahalo medium (IHM) on Mpc scales, rather than from the circum-galactic medium on 100kpc scales. Consequently, the color-density relation of the galaxy population as a whole would appear to be primarily due to a change in the mix of disk- and spheroid-dominated morphologies in the denser group environment compared to the field, rather than to a reduced propensity of the IHM in higher mass structures to cool and accrete onto galaxies. We also suggest that the inferred substantial accretion of IHM gas by satellite disk-dominated galaxies will lead to a progressive reduction in their specific angular momentum, thereby representing an efficient secular mechanism to transform morphology from star-forming disk-dominated types to more passive spheroid-dominated types.
  • Thumbnail

    Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    Grootes, M W; Tuffs, R J; Popescu, Cristina; Norberg, P; Robotham, A S G; Liske, J; Andrae, E; Baldry, I K; Gunawardhana, M; Kelvin, L S; et al. (The American Astronomical Society, 2017-02-15)
    We quantify the effect of the galaxy group environment (for group masses of 1012.5–1014.0 Me) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (i.e., late-type spiral) galaxies with redshift 0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M* 109.5 Me. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy–galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M* is controlled for by measuring offsets Δlog(ψ*) of grouped galaxies about a single power-law relation in specific SFR, y* µ *, exhibited by non-grouped “field” galaxies in the sample. While a small M-0.45 0.01minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ* statistically indistinguishable from their field counterparts, for all M*, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ*), we find that (i) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ∼1.5–5x SFR and ∼1–4 x SFR, respectively; and (ii) the independence of the continuity of these gas flow cycles on M* appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ∼100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ∼Mpc scales, i.e., from gas not initially associated with the galaxies upon infall. Consequently, the color–density relation of the galaxy population as a whole would appear to be primarily due to a change in the mix of disk- and spheroid-dominated morphologies in the denser group environment compared to the field, rather than to a reduced propensity of the IHM in higher-mass structures to cool and accrete onto galaxies. We also suggest that the required substantial accretion of IHM gas by satellite disk-dominated galaxies will lead to a progressive reduction in the specific angular momentum of these systems, thereby representing an efficient secular mechanism to transform morphology from star-forming disk-dominated types to more passive spheroid-dominated types.
  • Thumbnail

    Galaxy And Mass Assembly (GAMA): gas fueling of spiral galaxies in the local universe. I. The effect of the group environment on star formation in spiral galaxies

    Grootes, M W; Tuffs, R J; Popescu, C C; Norberg, P; Robotham, A S G; Liske, J; Andrae, E; Baldry, I K; Gunawardhana, M; Kelvin, L S; et al. (Institute of Physics, 2017-02-15)
    We quantify the effect of the galaxy group environment (for group masses of 1012.5–1014.0 Me) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (i.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M* ≥ 109.5 Me. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy–galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M* is controlled for by measuring offsets Δlog(ψ*) of grouped galaxies about a single power-law relation in specific SFR, * * y µ M-  0.45 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ* statistically indistinguishable from their field counterparts, for all M*, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ*), we find that (i) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ∼1.5–5 x SFR and ∼1–4 x SFR, respectively; and (ii) the independence of the continuity of these gas flow cycles on M* appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ∼100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ∼Mpc scales, i.e., from gas not initially associated with the galaxies upon infall. Consequently, the color–density relation of the galaxy population as a whole would appear to be primarily due to a change in the mix of disk- and spheroid-dominated morphologies in the denser group environment compared to the field, rather than to a reduced propensity of the IHM in higher-mass structures to cool and accrete onto galaxies. We also suggest that the required substantial accretion of IHM gas by satellite disk-dominated galaxies will lead to a progressive reduction in the specific angular momentum of these systems, thereby representing an efficient secular mechanism to transform morphology from star-forming disk-dominated types to more passive spheroid-dominated types.
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.