• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

A Framework for learning comprehensible theories in XML document classification

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Wu, Jemma
Contributor(s)
Macquarie University. Department of Environment and Geography
Keywords
knowledge representation
machine learning
semi-supervised learning
XML document

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/2454808
Online Access
http://hdl.handle.net/1959.14/174964
Abstract
XML has become the universal data format for a wide variety of information systems. The large number of XML documents existing on the web and in other information storage systems makes classification an important task. As a typical type of semistructured data, XML documents have both structures and contents. Traditional text learning techniques are not very suitable for XML document classification as structures are not considered. This paper presents a novel complete framework for XML document classification. We first present a knowledge representation method for XML documents which is based on a typed higher order logic formalism. With this representation method, an XML document is represented as a higher order logic term where both its contents and structures are captured. We then present a decision-tree learning algorithm driven by precision/recall breakeven point (PRDT) for the XML classification problem which can produce comprehensible theories. Finally, a semi-supervised learning algorithm is given which is based on the PRDT algorithm and the cotraining framework. Experimental results demonstrate that our framework is able to achieve good performance in both supervised and semi-supervised learning with the bonus of producing comprehensible learning theories.
14 page(s)
Date
2012
Type
journal article
Identifier
oai:minerva64:mq:20069
http://hdl.handle.net/1959.14/174964
mq:20069
mq-rm-2011007096
mq_res-ext-2-s2.0-82155192311
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.