Climate variability and climate change in water resources management of the Zambezi River basin
Author(s)
Tirivarombo, SithabileContributor(s)
Hughes, DenisKeywords
Water resources development--Zambezi River WatershedClimatic changes--Zambezi River Watershed
Water-supply--Zambezi River Watershed
Water-supply--Political aspects--Africa, Southern
Water rights--Africa, Southern
Water security--Africa, Southern
Rain and rainfall--Africa, Southern
Rainfall probabilities--Africa, Southern
Food security--Africa, Southern
Drought forecasting--Africa, Southern
Watersheds--Africa, Southern
Water supply--Measurement--Africa, Southern
Full record
Show full item recordOnline Access
http://hdl.handle.net/10962/d1002955Abstract
Water is recognised as a key driver for social and economic development in the Zambezi basin. The basin is riparian to eight southern African countries and the transboundary nature of the basin’s water resources can be viewed as an agent of cooperation between the basin countries. It is possible, however, that the same water resource can lead to conflicts between water users. The southern African Water Vision for ‘equitable and sustainable utilisation of water for social, environmental justice and economic benefits for the present and future generations’ calls for an integrated and efficient management of water resources within the basin. Ensuring water and food security in the Zambezi basin is, however, faced with challenges due to high variability in climate and the available water resources. Water resources are under continuous threat from pollution, increased population growth, development and urbanisation as well as global climate change. These factors increase the demand for freshwater resources and have resulted in water being one of the major driving forces for development. The basin is also vulnerable due to lack of adequate financial resources and appropriate water resources infrastructure to enable viable, equitable and sustainable distribution of the water resources. This is in addition to the fact that the basin’s economic mainstay and social well-being are largely dependent on rainfed agriculture. There is also competition among the different water users and this has the potential to generate conflicts, which further hinder the development of water resources in the basin. This thesis has focused on the Zambezi River basin emphasising climate variability and climate change. It is now considered common knowledge that the global climate is changing and that many of the impacts will be felt through water resources. If these predictions are correct then the Zambezi basin is most likely to suffer under such impacts since its economic mainstay is largely determined by the availability of rainfall. It is the belief of this study that in order to ascertain the impacts of climate change, there should be a basis against which this change is evaluated. If we do not know the historical patterns of variability it may be difficult to predict changes in the future climate and in the hydrological resources and it will certainly be difficult to develop appropriate management strategies. Reliable quantitative estimates of water availability are a prerequisite for successful water resource plans. However, such initiatives have been hindered by paucity in data especially in a basin where gauging networks are inadequate and some of them have deteriorated. This is further compounded by shortages in resources, both human and financial, to ensure adequate monitoring. To address the data problems, this study largely relied on global data sets and the CRU TS2.1 rainfall grids were used for a large part of this study. The study starts by assessing the historical variability of rainfall and streamflow in the Zambezi basin and the results are used to inform the prediction of change in the future. Various methods of assessing historical trends were employed and regional drought indices were generated and evaluated against the historical rainfall trends. The study clearly demonstrates that the basin has a high degree of temporal and spatial variability in rainfall and streamflow at inter-annual and multi-decadal scales. The Standardised Precipitation Index, a rainfall based drought index, is used to assess historical drought events in the basin and it is shown that most of the droughts that have occurred were influenced by climatic and hydrological variability. It is concluded, through the evaluation of agricultural maize yields, that the basin’s food security is mostly constrained by the availability of rainfall. Comparing the viability of using a rainfall based index to a soil moisture based index as an agricultural drought indicator, this study concluded that a soil moisture based index is a better indicator since all of the water balance components are considered in the generation of the index. This index presents the actual amount of water available for the plant unlike purely rainfall based indices, that do not account for other components of the water budget that cause water losses. A number of challenges were, however, faced in assessing the variability and historical drought conditions, mainly due to the fact that most parts of the Zambezi basin are ungauged and available data are sparse, short and not continuous (with missing gaps). Hydrological modelling is frequently used to bridge the data gap and to facilitate the quantification of a basin’s hydrology for both gauged and ungauged catchments. The trend has been to use various methods of regionalisation to transfer information from gauged basins, or from basins with adequate physical basin data, to ungauged basins. All this is done to ensure that water resources are accounted for and that the future can be well planned. A number of approaches leading to the evaluation of the basin’s hydrological response to future climate change scenarios are taken. The Pitman rainfall-runoff model has enjoyed wide use as a water resources estimation tool in southern Africa. The model has been calibrated for the Zambezi basin but it should be acknowledged that any hydrological modelling process is characterised by many uncertainties arising from limitations in input data and inherent model structural uncertainty. The calibration process is thus carried out in a manner that embraces some of the uncertainties. Initial ranges of parameter values (maximum and minimum) that incorporate the possible parameter uncertainties are assigned in relation to physical basin properties. These parameter sets are used as input to the uncertainty version of the model to generate behavioural parameter space which is then further modified through manual calibration. The use of parameter ranges initially guided by the basin physical properties generates streamflows that adequately represent the historically observed amounts. This study concludes that the uncertainty framework and the Pitman model perform quite well in the Zambezi basin. Based on assumptions of an intensifying hydrological cycle, climate changes are frequently expected to result in negative impacts on water resources. However, it is important that basin scale assessments are undertaken so that appropriate future management strategies can be developed. To assess the likely changes in the Zambezi basin, the calibrated Pitman model was forced with downscaled and bias corrected GCM data. Three GCMs were used for this study, namely; ECHAM, GFDL and IPSL. The general observation made in this study is that the near future (2046-2065) conditions of the Zambezi basin are expected to remain within the ranges of historically observed variability. The differences between the predictions for the three GCMs are an indication of the uncertainties in the future and it has not been possible to make any firm conclusions about directions of change. It is therefore recommended that future water resources management strategies account for historical patterns of variability, but also for increased uncertainty. Any management strategies that are able to satisfactorily deal with the large variability that is evident from the historical data should be robust enough to account for the near future patterns of water availability predicted by this study. However, the uncertainties in these predictions suggest that improved monitoring systems are required to provide additional data against which future model outputs can be assessed.Date
2012-12-03Type
ThesisIdentifier
oai:contentpro.seals.ac.za:d1002955http://hdl.handle.net/10962/d1002955
Collections
Related items
Showing items related by title, author, creator and subject.
-
Obtenir le meilleur parti des ressources rares : Une meilleure gouvernance pour une meilleure gestion de l'eau au moyen-orient et en Afrique du NordWorld Bank (Washington, DC, 2007)Water -- the resource itself as well as the irrigation and water supply services derived from it is important for every country. It is fundamental to human health, wellbeing, productivity, and livelihoods. It is also essential for the long-term sustainability of ecosystems. Here, in the Middle East and North Africa (MENA) region, the most water-scarce region of the world, good water management matters even more than it does elsewhere. The report suggests that MENA can meet its water management challenge. People have a very real need for water for drinking and for household uses. This domestic use, however, accounts for less than ten percent of a typical country's water consumption. Every country in the region has enough water resources to meet domestic needs, even accounting for the larger populations expected in the future. And policy decisions can help improve the way drinking water and sanitation services are delivered so that people get the services they need. The bulk of a typical country's water consumption goes to agriculture. This demand depends on such factors as the structure of the economy, people's consumption preferences, agriculture and trade policies, and how efficiently water is used. These factors can be influenced by policy choices. Similarly, countries can protect their environmental quality with policy and institutional choices. The necessary policy changes are far from easy. Yet they are essential, and, when coupled with improvements in accountability to the public, water resources and services will support communities and promote economic development and bring benefits to the entire population.
-
Making the Most of Scarcity : Accountability for Better Water Management Results in the Middle East and North AfricaWorld Bank (Washington, DC, 2012-06-01)Water -- the resource itself as well as the irrigation and water supply services derived from it is important for every country. It is fundamental to human health, wellbeing, productivity, and livelihoods. It is also essential for the long-term sustainability of ecosystems. Here, in the Middle East and North Africa (MENA) region, the most water-scarce region of the world, good water management matters even more than it does elsewhere. The report suggests that MENA can meet its water management challenge. People have a very real need for water for drinking and for household uses. This domestic use, however, accounts for less than ten percent of a typical country's water consumption. Every country in the region has enough water resources to meet domestic needs, even accounting for the larger populations expected in the future. And policy decisions can help improve the way drinking water and sanitation services are delivered so that people get the services they need. The bulk of a typical country's water consumption goes to agriculture. This demand depends on such factors as the structure of the economy, people's consumption preferences, agriculture and trade policies, and how efficiently water is used. These factors can be influenced by policy choices. Similarly, countries can protect their environmental quality with policy and institutional choices. The necessary policy changes are far from easy. Yet they are essential, and, when coupled with improvements in accountability to the public, water resources and services will support communities and promote economic development and bring benefits to the entire population.
-
The hydropolitics of Southern Africa: the case of the Zambezi river basin as an area of potential co-operation based on Allan's concept of virtual water.Kriek, A.; Kotze, D.J.; Turton, Anthony Richard (2015-01-23)Southern Africa generally has an arid climate and many hydrologists are predicting an increase in water scarcity over time. This research seeks to understand the implications of this in socio-political terms. The study is cross-disciplinary, examining how policy interventions can be used to solve the problem caused by the interaction between hydrology and demography. The conclusion is that water scarcity is not the actual problem, but is perceived as the problem by policy-makers. Instead,
 water scarcity is the manifestation of the problem, with root causes being a combination of climate change, population growth and misallocation of water within the economy due to a desire for national self-sufficiency in agriculture. The solution lies in the trade of products with a high water content, also known as 'virtual water'. Research on this specific issue is called for by the White Paper on Water Policy for South Africa.