• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Learning to Recognize Faces by Successive Meetings

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Castrillón-Santana, M.; IUSIANI, Edif. Ctral. del Parque Científico Tecnológico, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017
Déniz-Suárez, O.; IUSIANI, Edif. Ctral. del Parque Científico Tecnológico, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017
Lorenzo-Navarro, J.; IUSIANI, Edif. Ctral. del Parque Científico Tecnológico, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017
Hernández-Tejera, M.; IUSIANI, Edif. Ctral. del Parque Científico Tecnológico, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017
Keywords
face recognition, face detection, exemplars selection, learning systems, online learning, support vector machines, incremental PCA

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/2483061
Online Access
http://ojs.academypublisher.com/index.php/jmm/article/view/01070108
Abstract
In this paper we focus on the face recognition problem. However, instead of following the usual approach of manually gathering and registering face images to build a training set to compute a classifier off-line, the system will start with an empty training set, i.e. no experience, and it will build it autonomously by continuous on-line learning. In that way the classifier evolves with the perceptual experience of the system, similarly to the way humans do. Experiments have been performed with 310 sequences corresponding to 80 identities. Two different configurations have been analyzed depending on the ability to detect new, i.e. unknown, identities. The results achieved evidence that if a verification stage is included the system learns fast to detect new identities. For revisitors, the accumulated error rate decreases in both cases, reaching around 50% if no verification is included. These results seem to indicate that more interaction or meetings with the different individuals are needed to affirm that their identity is familiar enough to be recognized robustly.
Date
2006-11-01
Type
Regular Paper
Identifier
oai:ojs.www.academypublisher.com:article/2128
http://ojs.academypublisher.com/index.php/jmm/article/view/01070108
10.4304/jmm.1.7.1-8
Copyright/License
Copyright © ACADEMY PUBLISHER - All Rights Reserved.To request permission, please check out URL: http://www.academypublisher.com/copyrightpermission.html. 
Collections
OAI Harvested Content

entitlement

 

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Memoria digital de canarias

    Universidad de Las Palmas de Gran Canaria. Biblioteca Universitaria (2009-10-08)
  • Thumbnail

    Memoria digital de canarias

    Universidad de Las Palmas de Gran Canaria. Biblioteca Universitaria (ULPGC. Biblioteca Universitaria, 2009-10-08)
  • Thumbnail

    Manual de consulta del catálogo informatizado

    Universidad de Las Palmas de Gran Canaria. Biblioteca Universitaria (2009-10-08)
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.