• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • Ethics collections
  • Health Ethics
  • View Item
  •   Home
  • Ethics collections
  • Health Ethics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

LoginRegister

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Jaatinen, Leena
Young, Eleanore
Hyttinen, Jari
Vörös, János
Zambelli, Tomaso
Demkó, László
Keywords
Institute of Biomedical Engineering
170 Ethics
610 Medicine & health

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/248954
Online Access
https://dx.doi.org/10.5167/uzh-124990
Abstract
This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force–distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cellelasticity.Current doses above 11 As/m2, however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.
Date
2016
Type
Journal Article
Identifier
oai:www.zora.uzh.ch:124990
http://dx.doi.org/10.5167/uzh-124990
info:doi/10.1116/1.4940214
info:pmid/26790407
Copyright/License
info:eu-repo/semantics/openAccess
Collections
Health Ethics

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.