• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Unsupervised Video-to-Video Translation

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Bashkirova, Dina
Usman, Ben
Saenko, Kate
Keywords
Computer Science - Computer Vision and Pattern Recognition

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/2495874
Online Access
http://arxiv.org/abs/1806.03698
Abstract
Unsupervised image-to-image translation is a recently proposed task of translating an image to a different style or domain given only unpaired image examples at training time. In this paper, we formulate a new task of unsupervised video-to-video translation, which poses its own unique challenges. Translating video implies learning not only the appearance of objects and scenes but also realistic motion and transitions between consecutive frames.We investigate the performance of per-frame video-to-video translation using existing image-to-image translation networks, and propose a spatio-temporal 3D translator as an alternative solution to this problem. We evaluate our 3D method on multiple synthetic datasets, such as moving colorized digits, as well as the realistic segmentation-to-video GTA dataset and a new CT-to-MRI volumetric images translation dataset. Our results show that frame-wise translation produces realistic results on a single frame level but underperforms significantly on the scale of the whole video compared to our three-dimensional translation approach, which is better able to learn the complex structure of video and motion and continuity of object appearance.
Date
2018-06-10
Type
text
Identifier
oai:arXiv.org:1806.03698
http://arxiv.org/abs/1806.03698
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.