• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Half-CNN: A General Framework for Whole-Image Regression

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Yuan, Jun
Ni, Bingbing
Kassim, Ashraf A.
Keywords
Computer Science - Computer Vision and Pattern Recognition
Computer Science - Learning
Computer Science - Neural and Evolutionary Computing

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/2529536
Online Access
http://arxiv.org/abs/1412.6885
Abstract
The Convolutional Neural Network (CNN) has achieved great success in image classification. The classification model can also be utilized at image or patch level for many other applications, such as object detection and segmentation. In this paper, we propose a whole-image CNN regression model, by removing the full connection layer and training the network with continuous feature maps. This is a generic regression framework that fits many applications. We demonstrate this method through two tasks: simultaneous face detection & segmentation, and scene saliency prediction. The result is comparable with other models in the respective fields, using only a small scale network. Since the regression model is trained on corresponding image / feature map pairs, there are no requirements on uniform input size as opposed to the classification model. Our framework avoids classifier design, a process that may introduce too much manual intervention in model development. Yet, it is highly correlated to the classification network and offers some in-deep review of CNN structures.
Date
2014-12-22
Type
text
Identifier
oai:arXiv.org:1412.6885
http://arxiv.org/abs/1412.6885
Collections
OAI Harvested Content

entitlement

 

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Actes du CARI 2014 (Colloque africain sur la recherche en informatique et mathématiques appliquées)

    Université Badji Mokhtar - Annaba [Annaba] ( UBMA ); SUpervision of large MOdular and distributed systems ( SUMO ) ; Inria Rennes – Bretagne Atlantique ; Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -LANGAGE ET GÉNIE LOGICIEL ( IRISA-D4 ) ; Institut de Recherche en Informatique et Systèmes Aléatoires ( IRISA ) ; CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ) -CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ) -Institut de Recherche en Informatique et Systèmes Aléatoires ( IRISA ) ; CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ) -CentraleSupélec-Université de Rennes 1 ( UR1 ) ; Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Télécom Bretagne-Institut National des Sciences Appliquées ( INSA ) -École normale supérieure - Rennes ( ENS Rennes ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bretagne Sud ( UBS ); Laboratoire d'Analyse Numérique et Informatique [Sénégal] ( LANI ) ; Université Gaston Berger de Saint-Louis Sénégal ( UGB ); Mokhtar Sellami; Eric Badouel; Moussa Lo; Sellami , Mokhtar; Badouel , Eric; Lo , Moussa (HAL CCSDInria, 2014-10-17)
    International audience
  • Thumbnail

    An Intelligent Mediating Model for Collaborative e-Learning Management Systems

    Akanbi Caleb Olufisoye; Adagunodo E Rotimi (IJCSI Press, 2011-07-01)
    E-learning management systems(e- LMSs) lack ontologies for sharing their domain knowledge learning objects with others due to differences or non-uniformity in architectures, platforms, protocols and representations. The effect of this on e-learners is that collaboration with other e-LMS during learning processes is not permitted. Hence, learning process is restricted only to the knowledge base of a particular E-LMS adopted by an institution, which may limit the mastery level of learners. To provide a remedy to this problem, an intelligent multi-agent mediating system model is proposed in this study using hybrid rule and case based reasoning scheme. Unified Modeling Language(UML) is used as a design tool to specify the active and passive entities of the model in form class The model proposed provides a collaborative platform for sharing of the learning objects across multiple e-LMSs, during learning processes.
  • Thumbnail

    E-learning Materials Development: Applying and Implementing Software Reuse Principles and Granularity Levels in the Small

    Nabil Arman (SERSC, 2010-06-01)
    E-learning materials development is typically acknowledged as an expensive, complicated, and lengthy process, often producing materials that are of low quality and difficult to adaptand maintain. It has always been a challenge to identify proper e-learning materials that can be reused at a reasonable cost and effort. In this paper, software engineering reuse principlesare applied to e-learning materials development process. These principles are then applied and implemented in a prototype that is integrated with an open-source course management systems. The reuse of existing e-learning materials is beneficial in improving developers of elearning materials productivity. E-learning material reuse is performed, in this research, based on construct’s granularity rather than on unified constructs of one size.
DSpace software (copyright © 2002 - 2023)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.