• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Invariant Recognition Predicts Tuning of Neurons in Sensory Cortex

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Mutch, Jim
Anselmi, Fabio
Tacchetti, Andrea
Rosasco, Lorenzo
Leibo, Joel Z.
Poggio, Tomaso
Contributor(s)
Qi Zhao

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/2866985
Online Access
http://hdl.handle.net/11567/888555
Abstract
Tuning properties of simple cells in cortical V1 can be described in terms of a “universal shape” characterized quantitatively by parameter values which hold across different species (Jones and Palmer 1987; Ringach 2002; Niell and Stryker 2008). This puzzling set of findings begs for a general explanation grounded on an evolutionarily important computational function of the visual cortex. We show here that these properties are quantitatively predicted by the hypothesis that the goal of the ventral stream is to compute for each image a “signature” vector which is invariant to geometric transformations (Anselmi et al. 2013b). The mechanism for continuously learning and maintaining invariance may be the memory storage of a sequence of neural images of a few (arbitrary) objects via Hebbian synapses, while undergoing transformations such as translation, scale changes and rotation. For V1 simple cells this hypothesis implies that the tuning of neurons converges to the eigenvectors of the covariance of their input. Starting with a set of dendritic fields spanning a range of sizes, we show with simulations suggested by a direct analysis, that the solution of the associated “cortical equation” effectively provides a set of Gabor-like shapes with parameter values that quantitatively agree with the physiology data. The same theory provides predictions about the tuning of cells in V4 and in the face patch AL (Leibo et al. 2013a) which are in qualitative agreement with physiology data.
Date
2017
Type
info:eu-repo/semantics/bookPart
Identifier
oai:iris.unige.it:11567/888555
http://hdl.handle.net/11567/888555
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.