• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • Ethics collections
  • Elections and Ethics
  • View Item
  •   Home
  • Ethics collections
  • Elections and Ethics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

LoginRegister

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Robust estimation of adaptive tensors of curvature by tensor voting

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Tong, WS
Tang, CK
Keywords
Curvature
Curvature tensor
Tensor voting

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/348225
Online Access
https://dx.doi.org/10.1109/TPAMI.2005.62
http://lbsearch.ust.hk:3210/sfx?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=0162-8828&rft.volume=27&rft.issue=3&rft.date=2005&rft.spage=434&rft.epage=449&rft.aulast=Tong&rft.aufirst=WS&rft.atitle=Robust+estimation+of+adaptive+tensors+of+curvature+by+tensor+voting
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000226300200011
http://www.scopus.com/record/display.url?eid=2-s2.0-15044350226&origin=inward
Abstract
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
Date
2005
Type
Article
Identifier
oai:repository.ust.hk:1783.1-29937
IEEE transactions on pattern analysis and machine intelligence, v. 27, (3), 2005, MAR, p. 434-449
0162-8828
http://dx.doi.org/10.1109/TPAMI.2005.62
http://lbsearch.ust.hk:3210/sfx?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=0162-8828&rft.volume=27&rft.issue=3&rft.date=2005&rft.spage=434&rft.epage=449&rft.aulast=Tong&rft.aufirst=WS&rft.atitle=Robust+estimation+of+adaptive+tensors+of+curvature+by+tensor+voting
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000226300200011
http://www.scopus.com/record/display.url?eid=2-s2.0-15044350226&origin=inward
Collections
Elections and Ethics

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.