Show simple item record

dc.contributor.authorMohammed Al-Turki
dc.contributor.authorArshad Jamal
dc.contributor.authorHassan M. Al-Ahmadi
dc.contributor.authorMohammed A. Al-Sughaiyer
dc.contributor.authorMuhammad Zahid
dc.date.accessioned2020-09-16T20:14:17Z
dc.date.available2020-09-16T20:14:17Z
dc.date.created2020-09-14 23:35
dc.date.issued2020-09-01
dc.identifieroai:doaj.org/article:432c4a7a093b4bf7b329bf02f02b4d1c
dc.identifier10.3390/su12187394
dc.identifier2071-1050
dc.identifierhttps://doaj.org/article/432c4a7a093b4bf7b329bf02f02b4d1c
dc.identifier.urihttp://hdl.handle.net/20.500.12424/3964933
dc.description.abstractIntelligent traffic control at urban intersections is vital to ensure efficient and sustainable traffic operations. Urban road intersections are hotspots of congestion and traffic accidents. Poor traffic management at these locations could cause numerous issues, such as longer travel time, low travel speed, long vehicle queues, delays, increased fuel consumption, and environmental emissions, and so forth. Previous studies have shown that the mentioned traffic performance measures or measures of effectiveness (MOEs) could be significantly improved by adopting intelligent traffic control protocols. The majority of studies in this regard have focused on mono or bi-objective optimization with homogenous and lane-based traffic conditions. However, decision-makers often have to deal with multiple conflicting objectives to find an optimal solution under heterogeneous stochastic traffic conditions. Therefore, it is essential to determine the optimum decision plan that offers the least conflict among several objectives. Hence, the current study aimed to develop a multi-objective intelligent traffic control protocol based on the non-dominated sorting genetic algorithm II (NSGA-II) at isolated signalized intersections in the city of Dhahran, Kingdom of Saudi Arabia. The MOEs (optimization objectives) that were considered included average vehicle delay, the total number of vehicle stops, average fuel consumption, and vehicular emissions. NSGA-II simulations were run with different initial populations. The study results showed that the proposed method was effective in optimizing considered performance measures along the optimal Pareto front. MOEs were improved in the range of 16% to 23% compared to existing conditions. To assess the efficacy of the proposed approach, an optimization analysis was performed using a Synchro traffic light simulation and optimization tool. Although the Synchro optimization resulted in a relatively lower signal timing plan than NSGA-II, the proposed algorithm outperformed the Synchro optimization results in terms of percentage reduction in MOE values.
dc.languageEN
dc.publisherMDPI AG
dc.relation.ispartofhttps://www.mdpi.com/2071-1050/12/18/7394
dc.relation.ispartofhttps://doaj.org/toc/2071-1050
dc.sourceSustainability, Vol 12, Iss 7394, p 7394 (2020)
dc.subjecttraffic engineering
dc.subjectoptimization
dc.subjectsignalized intersections
dc.subjectcongestion
dc.subjectMOEs
dc.subjectNSGA-II
dc.subjectEnvironmental effects of industries and plants
dc.subjectTD194-195
dc.subjectRenewable energy sources
dc.subjectTJ807-830
dc.titleOn the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia
dc.typeArticle
ge.collectioncode2071-1050
ge.dataimportlabelOAI metadata object
ge.identifier.legacyglobethics:16836161
ge.lastmodificationdate2020-09-14 23:35
ge.lastmodificationuseradmin@pointsoftware.ch (import)
ge.submissions0
ge.oai.exportid150302
ge.oai.repositoryid52
ge.oai.setnameLCC:Environmental effects of industries and plants
ge.oai.setnameLCC:Renewable energy sources
ge.oai.setnameLCC:Environmental sciences
ge.oai.setspecTENDOkVudmlyb25tZW50YWwgZWZmZWN0cyBvZiBpbmR1c3RyaWVzIGFuZCBwbGFudHM~
ge.oai.setspecTENDOlJlbmV3YWJsZSBlbmVyZ3kgc291cmNlcw~~
ge.oai.setspecTENDOkVudmlyb25tZW50YWwgc2NpZW5jZXM~
ge.oai.streamid2
ge.setnameGlobeEthicsLib
ge.setspecglobeethicslib
ge.linkhttps://doaj.org/article/432c4a7a093b4bf7b329bf02f02b4d1c


This item appears in the following Collection(s)

Show simple item record