• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • Journals AtoZ
  • Sustainability (MDPI)
  • View Item
  •   Home
  • Journals AtoZ
  • Sustainability (MDPI)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

2dCNN-BiCuDNNLSTM: Hybrid Deep-Learning-Based Approach for Classification of COVID-19 X-ray Images

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Anika Kanwal
Siva Chandrasekaran
Keywords
COVID-19
image classification
chest X-ray image
deep learning
2dCNN-BiCuDNNLSTM
Environmental effects of industries and plants
TD194-195
Renewable energy sources
TJ807-830
Environmental sciences

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/4168969
Online Access
https://doaj.org/article/c363976147ee4e2d9bded219cb72985b
Abstract
The coronavirus (COVID-19) is a major global disaster of humankind, in the 21st century. COVID-19 initiates breathing infection, including pneumonia, common cold, sneezing, and coughing. Initial detection becomes crucial, to classify the virus and limit its spread. COVID-19 infection is similar to other types of pneumonia, and it may result in severe pneumonia, with bundles of illness onsets. This research is focused on identifying people affected by COVID-19 at a very early stage, through chest X-ray images. Chest X-ray classification is a beneficial method in the identification, follow up, and evaluation of treatment efficiency, for people with pneumonia. This research, also, considered chest X-ray classification as a basic method to evaluate the existence of lung irregularities in symptomatic patients, alleged for COVID-19 disease. The aim of this research is to classify COVID-19 samples from normal chest X-ray images and pneumonia-affected chest X-ray images of people, for early identification of the disease. This research will help people in diagnosing individuals for viruses and insisting that people receive proper treatment as well as preventive action, to stop the spread of the virus. To provide accurate classification of disease in patients’ chest X-ray images, this research proposed a novel classification model, named 2dCNN-BiCuDNNLSTM, which combines two-dimensional Convolutional Neural Network (CNN) and a Bidirectional CUDA Deep Neural Network Long Short-Term Memory (BiCuDNNLSTM). Deep learning is known for identifying the patterns in available data that will be helpful in accurate classification of disease. The proposed model (2dCNN and BiCuDNNLSTM layers, with proper hyperparameters) can differentiate normal chest X-rays from viral pneumonia and COVID-19 ones, with high accuracy. A total of 6863 X-ray images (JPEG) (1000 COVID-19 patients, 3863 normal cases, and 2000 pneumonia patients) have been engaged, to examine the achievement of the suggested neural network; 80% of the images dataset for every group is received for proposed model training, 10% is accepted for validation, and 10% is accepted for testing. It is observed that the proposed model acquires the towering classification accuracy of 93%. The proposed network is used for predictive analysis, to prompt people regarding the risk of early detection of COVID-19. X-ray images help to classify people with COVID-19 variants and to indicate the severity of disease in the future. This study demonstrates the effectiveness of the proposed CUDA-enabled hybrid deep learning models, to classify the X-ray image data, with a high accuracy of detecting COVID-19. It reveals that the proposed model can be applicable in numerous virus classifications. The chest X-ray classification is a commonly available and reasonable approach, for diagnosing people with lower respiratory signs or suspected COVID-19. Therefore, it is demonstrated that the proposed model has an efficient and promising accomplishment for classifying COVID-19 through X-ray images. The proposed hybrid model can, efficiently, preserve the comprehensive characteristic facts of the image data, for more exceptional concluding classification results than an individual neural network.
Date
2022-06-01
Type
Article
Identifier
oai:doaj.org/article:c363976147ee4e2d9bded219cb72985b
10.3390/su14116785
2071-1050
https://doaj.org/article/c363976147ee4e2d9bded219cb72985b
Collections
Sustainability (MDPI)

entitlement

 
DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.