• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • Educational collections
  • Ethics in Higher Education
  • View Item
  •   Home
  • Educational collections
  • Ethics in Higher Education
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

LoginRegister

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Automatic Term-Level Abstraction

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Brady, Bryan
Contributor(s)
Seshia, Sanjit A
Keywords
Electrical engineering
Computer science
Computer engineering
automatic abstraction
formal verification
machine learning
random simulation
static analysis
term-level abstraction

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/446834
Online Access
https://escholarship.org/uc/item/2h54t3gt
Abstract
Recent advances in decision procedures for Boolean satisfiability (SAT) and Satisfiability Modulo Theories (SMT) have increased the performance and capacity of formal verification techniques. Even with these advances, formal methods often do not scale to industrial-size designs, due to the gap between the level of abstraction at which designs are described and the level at which SMT solvers can be applied. In order to fully exploit the power of state-of-the-art SMT solvers, abstraction is necessary. However, applying abstraction to industrial-size designs is currently a daunting task, typically requiring major manual efforts. This thesis aims to bridge the gap between the level at which designs are described and the level at which SMT solvers can reason efficiently, referred to as the term level.This thesis presents automatic term-level abstraction techniques in the context of formal verification applied to hardware designs. The techniques aim to perform abstraction as automatically as possible, while requiring little to no user guidance. Data abstraction and function abstraction are the foci of this work. The abstraction techniques presented herein rely on combining static analysis, random simulation, machine learning, and abstraction-refinement in novel ways, resulting in more intelligent and scalable formal verification methodologies.The data abstraction procedure presented in this work uses static analysis to identify portions of a hardware design that can be re-encoded in a theory other than the theory of bit vectors, with the goal of creating an easier to reason about verification model. In addition, the data abstraction procedure can provide feedback that can help the designer create hardware designs that are easier to verify.The function abstraction procedures described in this work rely on static analysis, random simulation, machine learning, and counterexample-guided abstraction-refinement to identify and abstract functional blocks that are hard for formal tools to reason about. Random simulation is used to identify functional blocks that will likely yield substantial performance increases if they were to be abstracted. A static analysis-based technique, ATLAS, and a separate technique, CAL, based on a combination of machine learning and counterexample-guided abstraction-refinement, are then used to compute conditions under which it is precise to abstract. That is, functional blocks are abstracted in a manner that avoids producing spurious counterexamples.Experimental evidence is presented that proves the efficacy and efficiency of the data and function abstraction procedures. The experimental benchmarks are drawn from a wide range of hardware designs including network-on-chip routers, low-power circuits, and microprocessor designs.
Date
2011-01-01
Type
etd
Identifier
oai:escholarship.org/ark:/13030/qt2h54t3gt
qt2h54t3gt
https://escholarship.org/uc/item/2h54t3gt
Copyright/License
public
Collections
Ethics in Higher Education

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.