• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

LoginRegister

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Développement de méthodes de fouille de données basées sur les modèles de Markov cachés du second ordre pour l'identification d'hétérogénéités dans les génomes bactériens

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Eng, Catherine
Contributor(s)
UHP - Université Henri Poincaré
Université de Metz
Leblond, Pierre
Mari, Jean-François
Keywords
Bioinformatique
Fouille de données
Modèle de Markov du second ordre
Site de fixation des facteurs de transcription
Approche stochastique et combinatoire
Transfert horizontal de gènes
Streptomyces coelicolor
Streptococcus thermophilus
570
004

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/730132
Online Access
http://docnum.univ-lorraine.fr/public/SCD_T_2010_0041_ENG.pdf
http://docnum.univ-lorraine.fr/public/SCD_T_2010_0041_ENG_Annexes.zip
Abstract
Les modèles de Markov d'ordre 2 (HMM2) sont des modèles stochastiques qui ont démontré leur efficacité dans l'exploration de séquences génomiques. Cette thèse explore l'intérêt de modèles de différents types (M1M2, M2M2, M2M0) ainsi que leur couplage à des méthodes combinatoires pour segmenter les génomes bactériens sans connaissances a priori du contenu génétique. Ces approches ont été appliquées à deux modèles bactériens afin d'en valider la robustesse : Streptomyces coelicolor et Streptococcus thermophilus. Ces espèces bactériennes présentent des caractéristiques génomiques très distinctes (composition, taille du génome) en lien avec leur écosystème spécifique : le sol pour les S. coelicolor et le milieu lait pour S. thermophilus
Second-order Hidden Markov Models (HMM2) are stochastic processes with a high efficiency in exploring bacterial genome sequences. Different types of HMM2 (M1M2, M2M2, M2M0) combined to combinatorial methods were developed in a new approach to discriminate genomic regions without a priori knowledge on their genetic content. This approach was applied on two bacterial models in order to validate its achievements: Streptomyces coelicolor and Streptococcus thermophilus. These bacterial species exhibit distinct genomic traits (base composition, global genome size) in relation with their ecological niche: soil for S. coelicolor and dairy products for S. thermophilus. In S. coelicolor, a first HMM2 architecture allowed the detection of short discrete DNA heterogeneities (5-16 nucleotides in size), mostly localized in intergenic regions. The application of the method on a biologically known gene set, the SigR regulon (involved in oxidative stress response), proved the efficiency in identifying bacterial promoters. S. coelicolor shows a complex regulatory network (up to 12% of the genes may be involved in gene regulation) with more than 60 sigma factors, involved in initiation of transcription. A classification method coupled to a searching algorithm (i.e. R?MES) was developed to automatically extract the box1-spacer-box2 composite DNA motifs, structure corresponding to the typical bacterial promoter -35/-10 boxes. Among the 814 DNA motifs described for the whole S. coelicolor genome, those of sigma factors (?B, ?WhiG) could be retrieved from the crude data. We could show that this method could be generalized by applying it successfully in a preliminary attempt to the genome of Bacillus subtilis
Date
2010-06-15
Type
Electronic Thesis or Dissertation
Identifier
oai:univ-lorraine.fr:univ-lorraine-ori-20749
http://docnum.univ-lorraine.fr/public/SCD_T_2010_0041_ENG.pdf
http://docnum.univ-lorraine.fr/public/SCD_T_2010_0041_ENG_Annexes.zip
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.