• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

LoginRegister

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Recommender Systems and Learning Analytics in TEL

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Drachsler, Hendrik
Keywords
Technology Enhanced Learning
recommender systems
learning analytics
guest lecture
learning analytics framework

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/766085
Online Access
http://hdl.handle.net/1820/3840
Abstract
Drachsler, H. (2011, 23 June). Recommender Systems and
 Learning Analytics in TEL. Guest lecture at MUP/PLE lecture series, KMI, Open University UK.
Technology-enhanced learning aims to design, develop and test socio-technical innovations that will support and enhance learning practices and knowledge sharing of individuals and organizations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. With the increasing use of Learning Management Systems, Personal Learning Environments, and Data Mashups the TEL field, became a promising application area for information retrieval technologies and Recommender Systems to suggest most suitable learning content or peers to learners. The renewed interest in information retrieval technologies in TEL reveals itself through an increasing number of scientific events and publications combined under the research term Learning Analytics. Learning Analytics has the potential for new insights into learning processes by making so far invisible patterns in the educational data visible to researchers and develop new services for educational practice.This lecture attempts to provide an introduction to Recommender Systems for TEL, as well as to highlight their particularities compared to recommender systems for other application domains. Finally, it will outline the latest developments of Recommender Systems in the area of Learning Analytics. The recording of both lecture can be found here: http://stadium.open.ac.uk/podium/.
dataTEL, NeLLL AlterEgo
Date
2011-12-07
Type
Presentation
Identifier
oai:dspace.ou.nl:1820/3840
http://hdl.handle.net/1820/3840
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.