• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

LoginRegister

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

On the Intrinsic Limits to Representationally-Adaptive Machine-Learning

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Windridge, David
Keywords
Computer Science - Artificial Intelligence

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/783523
Online Access
http://arxiv.org/abs/1503.02626
Abstract
Online learning is a familiar problem setting within Machine-Learning in which data is presented serially in time to a learning agent, requiring it to progressively adapt within the constraints of the learning algorithm. More sophisticated variants may involve concepts such as transfer-learning which increase this adaptive capability, enhancing the learner's cognitive capacities in a manner that can begin to imitate the open-ended learning capabilities of human beings. We shall argue in this paper, however, that a full realization of this notion requires that, in addition to the capacity to adapt to novel data, autonomous online learning must ultimately incorporate the capacity to update its own representational capabilities in relation to the data. We therefore enquire about the philosophical limits of this process, and argue that only fully embodied learners exhibiting an a priori perception-action link in order to ground representational adaptations are capable of exhibiting the full range of human cognitive capability.
Date
2015-03-09
Type
text
Identifier
oai:arXiv.org:1503.02626
http://arxiv.org/abs/1503.02626
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.