• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • English 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • Login
View Item 
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
  •   Home
  • OAI Data Pool
  • OAI Harvested Content
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of the LibraryCommunitiesPublication DateTitlesSubjectsAuthorsThis CollectionPublication DateTitlesSubjectsAuthorsProfilesView

My Account

Login

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Online Learning in Opportunistic Spectrum Access: A Restless Bandit Approach

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Tekin, Cem
Liu, Mingyan
Keywords
Mathematics - Optimization and Control
Computer Science - Learning

Full record
Show full item record
URI
http://hdl.handle.net/20.500.12424/825015
Online Access
http://arxiv.org/abs/1010.0056
Abstract
We consider an opportunistic spectrum access (OSA) problem where the time-varying condition of each channel (e.g., as a result of random fading or certain primary users' activities) is modeled as an arbitrary finite-state Markov chain. At each instance of time, a (secondary) user probes a channel and collects a certain reward as a function of the state of the channel (e.g., good channel condition results in higher data rate for the user). Each channel has potentially different state space and statistics, both unknown to the user, who tries to learn which one is the best as it goes and maximizes its usage of the best channel. The objective is to construct a good online learning algorithm so as to minimize the difference between the user's performance in total rewards and that of using the best channel (on average) had it known which one is the best from a priori knowledge of the channel statistics (also known as the regret). This is a classic exploration and exploitation problem and results abound when the reward processes are assumed to be iid. Compared to prior work, the biggest difference is that in our case the reward process is assumed to be Markovian, of which iid is a special case. In addition, the reward processes are restless in that the channel conditions will continue to evolve independent of the user's actions. This leads to a restless bandit problem, for which there exists little result on either algorithms or performance bounds in this learning context to the best of our knowledge. In this paper we introduce an algorithm that utilizes regenerative cycles of a Markov chain and computes a sample-mean based index policy, and show that under mild conditions on the state transition probabilities of the Markov chains this algorithm achieves logarithmic regret uniformly over time, and that this regret bound is also optimal.
Date
2010-09-30
Type
text
Identifier
oai:arXiv.org:1010.0056
http://arxiv.org/abs/1010.0056
Collections
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2023)  DuraSpace
Quick Guide | Contact Us
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.