• English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • 中文 
    • English
    • français
    • Deutsch
    • español
    • português (Brasil)
    • Bahasa Indonesia
    • русский
    • العربية
    • 中文
  • 登入
查看項目 
  •   首頁
  • OAI Data Pool
  • OAI Harvested Content
  • 查看項目
  •   首頁
  • OAI Data Pool
  • OAI Harvested Content
  • 查看項目
JavaScript is disabled for your browser. Some features of this site may not work without it.

瀏覽

所有文獻群體出版日期標題主題作者此合集出版日期標題主題作者個人檔案檢視

我的帳號

登入註冊

The Library

AboutNew SubmissionSubmission GuideSearch GuideRepository PolicyContact

A Discriminative Framework for Modelling Object Classes

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Author(s)
Holub, Alex
Perona, Pietro

所有記錄
顯示完整的項目記錄
URI
http://hdl.handle.net/20.500.12424/831673
Online Access
http://resolver.caltech.edu/CaltechAUTHORS:20110809-084835731
http://authors.library.caltech.edu/24751/
Abstract
Here we explore a discriminative learning method on underlying generative models for the purpose of discriminating between object categories. Visual recognition algorithms learn models from a set of training examples. Generative models learn their representations by considering data from a single class. Generative models are popular in computer vision for many reasons, including their ability to elegantly incorporate prior knowledge and to handle correspondences between object parts and detected features. However, generative models are often inferior to discriminative models during classification tasks. We study a discriminative approach to learning object categories which maintains the representational power of generative learning, but trains the generative models in a discriminative manner. The discriminatively trained models perform better during classification tasks as a result of selecting discriminative sets of features. We conclude by proposing a multiclass object recognition system which initially trains object classes in a generative manner, identifies subsets of similar classes with high confusion, and finally trains models for these subsets in a discriminative manner to realize gains in classification performance.
Date
2005
Type
Book Section
Identifier
oai:authors.library.caltech.edu:24751
Holub, Alex and Perona, Pietro (2005) A Discriminative Framework for Modelling Object Classes. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE , Los Alamitos, CA, pp. 664-671. ISBN 0-7695-2372-2 http://resolver.caltech.edu/CaltechAUTHORS:20110809-084835731 <http://resolver.caltech.edu/CaltechAUTHORS:20110809-084835731>
合集
OAI Harvested Content

entitlement

 
DSpace software (copyright © 2002 - 2021)  DuraSpace
快速指南 | 聯絡我們
Open Repository is a service operated by 
Atmire NV
 

導出搜尋結果

導出選項允許您將輸入的查詢所產生的搜尋結果導出到一個檔案中。有不同的格式可以選擇下載。要導出項目,請點擊與最佳下載格式相對應的按鈕。

預設情況下,點擊導出按鈕會導致進行系統允許下,下載最大數量的項目。

要選擇搜索結果的子集,請點擊「選擇性導出」按鈕,然後選擇要導出的項目。每次可以導出的項目數量與完全導出受到同樣的限制。

"

作出選擇後,點擊其中一個導出格式按鈕。導出格式旁邊的氣泡中會顯示即將導出的項目數量。

"