ON THE PROPAGATION OF A PERIODIC FLAME FRONT BY AN ARRHENIUS KINETIC
Contributor(s)
Laboratoire de Mathématiques de Besançon (LMB) ; Université de Franche-Comté (UFC) - Centre National de la Recherche Scientifique (CNRS)ANR-11-JS01-0006, CoToCoLa, Thématiques actuelles en lois de conservation(2011)
Keywords
asymptotic analysishomogenization
curvature effects
periodic solutions
travelling wave solutions
free boundary problems
front propagation
combustion
Arrhenius law
Primary 35R35, 80A25, 35C07, 35B10; Secondary 35B27, 80M35
[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]
Full record
Show full item recordOnline Access
https://hal.archives-ouvertes.fr/hal-01247348https://hal.archives-ouvertes.fr/hal-01247348v2/document
https://hal.archives-ouvertes.fr/hal-01247348/file/AlNa16.pdf
Abstract
42 pages. The statements of Theorems 7 and 8 have been improved.We consider the propagation of a flame front in a solid medium with a periodic structure. The model is governed by a free boundary system for the pair " temperature-front. " The front's normal velocity depends on the temperature via a (degenerate) Arrhenius kinetic. It also depends on the front's mean curvature. We show the existence of travelling wave solutions for the full system and consider their homogenization as the period tends to zero. We analyze the curvature effects on the homogenization and obtain a continuum of limiting waves parametrized by the limiting ratio " curvature coefficient/period. " This analysis provides valuable information on the heterogeneous propagation as well.
Date
2016-02-01Type
info:eu-repo/semantics/preprintIdentifier
oai:HAL:hal-01247348v2hal-01247348
https://hal.archives-ouvertes.fr/hal-01247348
https://hal.archives-ouvertes.fr/hal-01247348v2/document
https://hal.archives-ouvertes.fr/hal-01247348/file/AlNa16.pdf
ARXIV : 1512.06691